04/05/2017

Industrial experience with Agile in
high-integrity software development

Working software \

Roderick Chapman
Principal Engineer, Altran UK

dLTRan

Can we do “High Integrity Agile” ?

= Short Answer

YES!
g

dlLTRan

04/05/2017

Can we do “High Integrity Agile” ?

= Long Answer

Yes ... but ...

g

dLTRan

CONTENT

Mo E

Background and sources

High-Integrity Agile - Assumptions and Issues
Agile Blind Spots - Turning the Dials Up

The $64M Question...

Next Steps...

g

dlLTRan

04/05/2017

CONTENT

. Background and sources

High-Integrity Agile - Assumptions and Issues
Agile Blind Spots - Turning the Dials Up

The $64M Question...

Next Steps...

m o N w

g

dLTRan

Some light reading...

G IFAC SAFECOMP ‘30,
it Ew‘ s SOFTWARE DELIVERY AND

FEQUIREMENTS
\ %d\
N

2 CP
?6/19 COMPUTER SYSTEM DEVELOPMENT:
Q PROBLEMS EXPERIENCED IN THE USE OF
% INCREMENTAL DELIVERY

F. j. Redmill
British Telecom International, UX

Incremental delivery offers wGvantages over the watecfall dovelcpment

@xisl, This papec, based on £L o9 and
describes a nusber of prablems which developacs and project managers must
devl with.

Keywaroe. Project q ; softwace en ing} celivery,

dlLTRan

Grady Booch - Alistair Cockburn - Arthur Pyster

Barry Boehm
Richard Turner

x.
Balancing Agility
and Discipline
A Guide for the Perplexed

Forewords by

Rl

dLTRan

‘TC/F C/‘O/’)”/l« /Ti/// J;n{ 200

COVER FEATURE

Craig
Larman
Valtech

Victor R.

Basili
University of
Maryland

n
LS

lterative and Incremental
Development: oz

A Brief History

as a modern

many view and

practice, its application dates as far back as the mid-1950s. Prominent
software-engineering thought leaders from each succeeding decade
supported IID practices, and many large pr used them

s agile methods become more popular,
some view iterative, evolutionary, and
software d

opment” merely for rework, in modern agile meth-
ods the term implics not just revisiting work, but
I i usage that dates

cornerstone of these methods—as the
“modern” replacement of the waterfall
model, but ts practiced and published roots go back
decades. Of course, many software-cnginecring stu-
dents are aware of this, yet surprisingly, some com-
mercial and government organizations still are not.

from at least 1968.

PRE-1970

1D grew from the 1930s work of Walter
Shewhart, a quality expert at Bell Labs who pro-
posed a series of short *plan-do-study-act” (PDSA)

dlLTRan

04/05/2017

Static Verification and Extreme Programming
Peter Amey, Roderick Chapman

Sk
"20@ R 4/0\

ABSTRACT
At first glance, the worlds of high-integrity software engineering
and Extreme Programming (XP) scem to have little in common,
Somewhat surprisingly, we have found the reverse to be the
case—indeed it seems that many practices advocated by the XP
community ar¢ familiar to us from many years' of experience in
building safety- and security-critical systems. This paper
discusses our experiences in applying some XP practices in
critical projects. Secondly, we discuss how static verification can
augment XP, particularly in the Pairwise Programming and
Refactoring practices.

Categories and Subject Descriptors
D24 Engincering] Soflwarc/Program Verif

Praxis Critical Systems
20, Manver Street
Bath, BA1 1PX, UK
+44 (0)1225 466991

peter.amey@praxis-cs.co.uk
rod.chapman@praxis-cs.co.uk

Pair programming
o Collective ownership
* Continuous integration
* 40-hour weck
* On-site customer
* Coding standards

Most of these are not new or radical at all: they are well tried and
tested ideas that have been known to the software engineering
community for some time. Practices such as regression testing,

i i colleetive and the use of
coding standards should not come as a surprise to anyone
involved with the development of high-integrity software systems.

dLTRan

dlLTRan

04/05/2017

04/05/2017

cover rearunc || NIRRNRRIRRRE AR R A

; FORMAL
VERSUS AGILE:
SURVIVAL OF
£ THE FITTEST?

Sue Black, University of Westminster / C?z\

Paul P. Boca, Hornbill Systems Ltd.
Jonathan P. Bowen, Museophile Ltd. J Py é /77/71/\/%.
Jason Gorman, Codemanship Ltd. w “ "2_() i &

Milke Hinchey, Lero—the Irish Software Engineering Research Centre (& 7

dLTRan
IEEE /TPl 201
dlLTRan

04/05/2017

Int. J. Critical Computer-Based Systems, Vol. 2, No. 2, 2011 181

High-integrity agile processes for the development of
safety critical software

Richard F. Paige*, Andy Galloway,
Ramon Charalambous and Xiaocheng Ge

Department of Computer Science,
University of York,

Deramore Lane, York, YO10 5GH, UK
E-mail: paige@cs.york.ac.uk

E-mail: andyg(
E-mail: xchge@cs.y
E-mail: ramon.charalambous@gmail.com
*Corresponding author

Phillip J. Brooke

School of Computing.
University of Teesside,
Middlesbrough, TSI 3BA, UK
E-mail: pjb@scm.tees.ac.uk

dLTRan

Mark Lines &
ScoPE W "AiBler

Bertrand M

The Good, the Hype and the

‘@ Springer

=7
e - aLTRan

04/05/2017

..and a couple of projects...

aALTRAanN
..and a couple of projects...
. separationMonitor
Separation (NM) R Al Labels Reset
I Route Assured
15 —
»
15
10
v
12
5
v
10
0
0 2 4 6 8 10 12 14
v 8 v 10 v 12 4 15 mins
alTRaN

04/05/2017

...and reports from industry...

* Many reports of Agile being used in medical
devices, under FDA regulatory regime,

» Thales Avionics (Valence, France) report use
of Agile in development of avionic systems,

= And many more...

g

dLTRan

CONTENT
A. Background and sources
.. High-Integrity Agile -
Assumptions and Issues

C. Agile Blind Spots - Turning the Dials Up

D. The $64M Question...

E. Next Steps...
alLTRan

04/05/2017

Single customer?

= Scrum viewpoint: Single “customer”,
represented by “Product Owner” role...

= Really?

= What about

> Multiple classes of “User”

> Procurer

> Regulator (and standard-setting body)
> Project ISA

dLTRan

Regression Test and Verification

= Agile view: “Regression Test” is principal
(only?) verification activity, and is fast and
amenable to automation.

= “All tests pass” defines
> When a refactoring is done

> When a product is “good enough” to close a
sprint and ship to customer.

dlLTRan

10

04/05/2017

Regression Test and Verification
* High Integrity View - No chance!

= We know “test” is utterly insufficient to claim
ultra-reliability, safety or security properties.

> Butler/Finelli and Littlewood papers from 20
years ago...

> Security will always defy test anyway...
- Programming Satan’s Computer...

dLTRan

Regression Test and Verification

= Many more forms of verification are required
by standards, for example:

Personal and Peer Review

Automated static analysis

Structural coverage (on target?)

Traceability analysis

Performance test

Penetration test etc. etc...

v vV vV vV v v

= We know we can do much better anyway - for
example, aggressive use of sound static
analysis.

dlLTRan

11

04/05/2017

Upfront and Architecture

= Observation 1: High-Integrity systems have
demanding non-functional requirements for
safety, security, performance, reliability etc.
etc.

» Observation 2: Our main weapon to achieve
these goals is architecture.

» Observation 3: You can'’t afford to “refactor
in” these properties into a system late in the
day!

dLTRan

Upfront and Architecture

» Conclusion: we need just enough upfront
architecture and design to be certain that

> Non-functional requirements will be met.

> Change can be accommodated later without
horrendous pain and expense.

> We can estimate the size (and therefore price)
of the first N development iteration(s).

dlLTRan

12

04/05/2017

Upfront and Architecture

» But how do we know what non-functional
properties are required of the architecture?

* Errm...by doing proper (Up Front)
requirements engineering for safety and
security properties...

dLTRan

User Stories and Non-Functional

= Agile-style “User Stories” provide a sampling of the
“D, S, R space”

* There will be “gaps” between the stories...

» Guess where the safety and security problems will
lie...

* Aside: how much of the MULTOS CA formal
specification is devoted to error handling??

dlLTRan

13

04/05/2017

Agile “Simple sprint pipeline”

» Agile presumes a two-stage pipeline: one system
being used by the customer and one system being
developed in current sprint.

> Delivery and deployment is assumed to be
“instant”...

= Real world: no chance!

= Example: iFACTS 4-stage pipeline

Build N: in live operation

Build N+1: in NATS’ test lab

Build N+2: in development/test at Altran

>
>
>
> Build N+3: Requirements and formal specification

dLTRan

Iteration rate...

= How fast can we iterate?
> Only as fast as the slowest pipeline stage...

> Full-blown evidence (e.g. safety case production) and
customer acceptance test might be way too slow for a
standard “Agile” model...

= |dea: multiple iteration rates and deliveries:
> Fast “minor” iteration with reduced evidence package and

limited deployment.

> Slower “major” iteration with full evidence, suitable for
operational deployment.

dlLTRan

14

04/05/2017

Embedded Systems Issues

» Agile depends on plentiful availability of
“target environment” to drive a fast
build/integration/test process.

» Not True for embedded systems.

> Many projects have no target hardware for the
majority of the time...

»= Some verification activities (e.g. on-target
structural coverage) are painful and slow.

dLTRan

Embedded Systems Issues

* Availability of target hardware for “test” can
be a massive bottleneck.

* |dea: don’t depend on “target hardware” and
“test” so much...

» |dea: Virtualize the “deployment environment”
(i.e. the target machine).
> See the next presentation...

dlLTRan

15

04/05/2017

CONTENT

A. Background and sources
B. High-Integrity Agile - Assumptions and Issues

. Agile Blind Spots - Turning
the Dials Up

D. The $64M Question...
E. Next Steps...

g

dLTRan

Turning the dials up...

= We’ve been building high-integrity software for
more than 20 years...

* What have we learned that could improve an Agile
approach?

= What about

Team and Personal Software Process (TSP/PSP)?
Formal Methods?

Correctness-by-Construction approach?

Lean Engineering?

Programming Language Design and Static Verication like SPARK? _

dlLTRan

vV v v v

16

04/05/2017

Static Verification

= Strong Static Verification can complement “test”

> Faster
> “Sounder” - potentially covers all input data and system states.
> Deeper - prevents and finds bugs that “test” simply cannot reach.

= So...precede “Regression Test” with “Regression Proof”

= All developers run SV tools all the time, and is not
dependent on availability of target hardware, so scales
well.

= Performance? iFACTS regression proof now takes 15
minutes.

dLTRan

Reviewing vs pair programming

= Jury is still out on whether XP-style“pair programming”
is really better...

= Conjecture:
> Developer +
> Strong Static Verification +
> PSP Personal Review +
> TSP Peer Review

= __.is much better.

= No control experiment to confirm this...sorry!

dlLTRan

17

04/05/2017

Automation, automation, automation...

= Can we automate production of other verification
evidence?

> Structural coverage
> Traceability analysis
> Other artefacts required by your standard or regulator?

= Yes...of course...

= So...right-to-left plan it. Work out which artefacts can
be auto-generated and plan approach, disciplines and
languages to do this in your minor or major iteration.

dLTRan

A naive Agile “build/integration” system

Automation

Build Builds OK? Yes—| Regression Test Al tests pass? Yes———»|

test results

dback, Changes, Def

Developer

Customer

dlLTRan

18

An Agile “Evidence Engine”...

“evidence Engine”
Static Analysis Document Build Dynamic Analysis
b Generation 0 &

Build results

Designs, “Models”,
Document templates,
Sources etc.

dback, Changes, Defect

Developer
Customer
ALTRan
CONTENT
A. Background and sources
B. High-Integrity Agile - Assumptions and Issues
C. Agile Blind Spots - Turning the Dials Up
D. The $64M Question...
E. Next Steps...
alTRan

04/05/2017

19

04/05/2017

The $64M question...

» So...how much “Upfront” is “Just Right” 72?
* |t depends...

* _..but inform this decision with solid
Requirements Engineering, especially for non-
functional properties.

dLTRan

The $64M question...

* Proposal: two-stage project

= Stage 1: Upfront work, resulting in requirements,
specification (complete enough to estimate from),
and enough architecture to verify NFRs and
foreseeable change.

= Stage 2: Incremental/Agile build with multiple
iteration rates.

» Critical: Completely different contractual and
financial terms for Stages 1 and 2. (Discuss with
your procurer... ©)

dlLTRan

20

CONTENT

A. Background and sources

B. High-Integrity Agile - Assumptions and Issues
C. Agile Blind Spots - Turning the Dials Up
D. The $64M Question...
. Next Steps...
dLTRan
Next Steps...
» For us: report on next project - Scrum with
SPARK!

* For us: Publish...watch this space... ©

» For you: please publish your experiences.

g

dlLTRan

04/05/2017

21

04/05/2017

Homework...

b ﬂ‘l‘f

THE %

CHECKLIST

MANIFESTO

L ATUL GAWANDE
‘Bestselling author of Complications & Better 1 adlLTRan

Questions?

dlLTRan

22

