
04/05/2017

1

Industrial experience with Agile in
high-integrity software development

Working software

Responding to change

Customer collaboration

Roderick Chapman
Principal Engineer, Altran UK

Can we do “High Integrity Agile” ?

2

▪ Short Answer

YES!

04/05/2017

2

Can we do “High Integrity Agile” ?

3

▪ Long Answer

Yes … but …

CONTENT

A. Background and sources

B. High-Integrity Agile – Assumptions and Issues

C. Agile Blind Spots – Turning the Dials Up

D. The $64M Question…

E. Next Steps…

04/05/2017

3

CONTENT

A. Background and sources
B. High-Integrity Agile – Assumptions and Issues

C. Agile Blind Spots – Turning the Dials Up

D. The $64M Question…

E. Next Steps…

Some light reading…

6

04/05/2017

4

04/05/2017

5

04/05/2017

6

04/05/2017

7

04/05/2017

8

…and a couple of projects…

15

…and a couple of projects…

16

04/05/2017

9

…and reports from industry…

17

▪ Many reports of Agile being used in medical

devices, under FDA regulatory regime,

▪ Thales Avionics (Valence, France) report use

of Agile in development of avionic systems,

▪ And many more…

CONTENT

A. Background and sources

B. High-Integrity Agile –
Assumptions and Issues

C. Agile Blind Spots – Turning the Dials Up

D. The $64M Question…

E. Next Steps…

04/05/2017

10

Single customer?

19

▪ Scrum viewpoint: Single “customer”,

represented by “Product Owner” role…

▪ Really?

▪ What about

› Multiple classes of “User”

› Procurer

› Regulator (and standard-setting body)

› Project ISA

Regression Test and Verification

20

▪ Agile view: “Regression Test” is principal

(only?) verification activity, and is fast and

amenable to automation.

▪ “All tests pass” defines

› When a refactoring is done

› When a product is “good enough” to close a

sprint and ship to customer.

04/05/2017

11

Regression Test and Verification

21

▪ High Integrity View - No chance!

▪ We know “test” is utterly insufficient to claim

ultra-reliability, safety or security properties.

› Butler/Finelli and Littlewood papers from 20

years ago…

› Security will always defy test anyway…

- Programming Satan’s Computer…

Regression Test and Verification

22

▪ Many more forms of verification are required

by standards, for example:

› Personal and Peer Review

› Automated static analysis

› Structural coverage (on target?)

› Traceability analysis

› Performance test

› Penetration test etc. etc…

▪ We know we can do much better anyway – for

example, aggressive use of sound static

analysis.

04/05/2017

12

Upfront and Architecture

23

▪ Observation 1: High-Integrity systems have

demanding non-functional requirements for

safety, security, performance, reliability etc.

etc.

▪ Observation 2: Our main weapon to achieve

these goals is architecture.

▪ Observation 3: You can’t afford to “refactor

in” these properties into a system late in the

day!

Upfront and Architecture

24

▪ Conclusion: we need just enough upfront

architecture and design to be certain that

› Non-functional requirements will be met.

› Change can be accommodated later without

horrendous pain and expense.

› We can estimate the size (and therefore price)

of the first N development iteration(s).

04/05/2017

13

Upfront and Architecture

25

▪ But how do we know what non-functional

properties are required of the architecture?

▪ Errm…by doing proper (Up Front)

requirements engineering for safety and

security properties…

User Stories and Non-Functional

26

▪ Agile-style “User Stories” provide a sampling of the

“D, S, R space”

▪ There will be “gaps” between the stories…

▪ Guess where the safety and security problems will

lie…

▪ Aside: how much of the MULTOS CA formal

specification is devoted to error handling??

04/05/2017

14

Agile “Simple sprint pipeline”

27

▪ Agile presumes a two-stage pipeline: one system

being used by the customer and one system being

developed in current sprint.

› Delivery and deployment is assumed to be

“instant”…

▪ Real world: no chance!

▪ Example: iFACTS 4-stage pipeline

› Build N: in live operation

› Build N+1: in NATS’ test lab

› Build N+2: in development/test at Altran

› Build N+3: Requirements and formal specification

Iteration rate…

28

▪ How fast can we iterate?

› Only as fast as the slowest pipeline stage…

› Full-blown evidence (e.g. safety case production) and

customer acceptance test might be way too slow for a

standard “Agile” model…

▪ Idea: multiple iteration rates and deliveries:

› Fast “minor” iteration with reduced evidence package and

limited deployment.

› Slower “major” iteration with full evidence, suitable for

operational deployment.

04/05/2017

15

Embedded Systems Issues

29

▪ Agile depends on plentiful availability of

“target environment” to drive a fast

build/integration/test process.

▪ Not True for embedded systems.

› Many projects have no target hardware for the

majority of the time…

▪ Some verification activities (e.g. on-target

structural coverage) are painful and slow.

Embedded Systems Issues

30

▪ Availability of target hardware for “test” can

be a massive bottleneck.

▪ Idea: don’t depend on “target hardware” and

“test” so much…

▪ Idea: Virtualize the “deployment environment”

(i.e. the target machine).

› See the next presentation…

04/05/2017

16

CONTENT

A. Background and sources

B. High-Integrity Agile – Assumptions and Issues

C. Agile Blind Spots – Turning
the Dials Up

D. The $64M Question…

E. Next Steps…

Turning the dials up…

32

▪ We’ve been building high-integrity software for

more than 20 years…

▪ What have we learned that could improve an Agile

approach?

▪ What about

› Team and Personal Software Process (TSP/PSP)?

› Formal Methods?

› Correctness-by-Construction approach?

› Lean Engineering?

› Programming Language Design and Static Verication like SPARK?

04/05/2017

17

Static Verification

33

▪ Strong Static Verification can complement “test”

› Faster

› “Sounder” – potentially covers all input data and system states.

› Deeper – prevents and finds bugs that “test” simply cannot reach.

▪ So…precede “Regression Test” with “Regression Proof”

▪ All developers run SV tools all the time, and is not

dependent on availability of target hardware, so scales

well.

▪ Performance? iFACTS regression proof now takes 15

minutes.

Reviewing vs pair programming

34

▪ Jury is still out on whether XP-style“pair programming”

is really better…

▪ Conjecture:

› Developer +

› Strong Static Verification +

› PSP Personal Review +

› TSP Peer Review

▪ …is much better.

▪ No control experiment to confirm this…sorry!

04/05/2017

18

Automation, automation, automation…

35

▪ Can we automate production of other verification

evidence?

› Structural coverage

› Traceability analysis

› Other artefacts required by your standard or regulator?

▪ Yes...of course…

▪ So…right-to-left plan it. Work out which artefacts can

be auto-generated and plan approach, disciplines and

languages to do this in your minor or major iteration.

A naïve Agile “build/integration” system

36

Automation

Build Builds OK? Regression Test All tests pass?
Sources

DeveloperDeveloper

CustomerCustomer

Build and
test results

Build and
test results

Yes Yes

NoFailures

Feedback, Changes, Defects

04/05/2017

19

An Agile “Evidence Engine”...

37

“Evidence Engine”

Static Analysis Dynamic Analysis

Designs, “Models”,
Document templates,

Sources etc.

DeveloperDeveloper

CustomerCustomer

New BuildNew Build

Analyses, Proofs,
Traceability results

Feedback, Changes, Defects

Regression test results,
Fuzz testing results,

performance analysis

Build
Document
Generation

Documentation,
Assurance Case,

Project Dashboard etc.

Assurance Evidence

Build results

CONTENT

A. Background and sources

B. High-Integrity Agile – Assumptions and Issues

C. Agile Blind Spots – Turning the Dials Up

D. The $64M Question…
E. Next Steps…

04/05/2017

20

The $64M question…

39

▪ So...how much “Upfront” is “Just Right” ???

▪ It depends…

▪ …but inform this decision with solid

Requirements Engineering, especially for non-

functional properties.

The $64M question…

40

▪ Proposal: two-stage project

▪ Stage 1: Upfront work, resulting in requirements,

specification (complete enough to estimate from),

and enough architecture to verify NFRs and

foreseeable change.

▪ Stage 2: Incremental/Agile build with multiple

iteration rates.

▪ Critical: Completely different contractual and

financial terms for Stages 1 and 2. (Discuss with

your procurer… ☺)

04/05/2017

21

CONTENT

A. Background and sources

B. High-Integrity Agile – Assumptions and Issues

C. Agile Blind Spots – Turning the Dials Up

D. The $64M Question…

E. Next Steps…

Next Steps…

42

▪ For us: report on next project – Scrum with

SPARK!

▪ For us: Publish…watch this space… ☺

▪ For you: please publish your experiences.

04/05/2017

22

Homework…

43

Questions?

44

